Code: RA07A31001

II B.Tech I Semester(R09) Supplementary Examinations, May 2011 ELECTROMAGNETIC WAVES & TRANSMISSION LINES (Electronics & Instrumentation Engineering)

(For students of R07 regulation readmitted to II B.Tech I Semester R09)

Time: 3 hours

Max Marks: 70

Answer any FIVE questions All questions carry equal marks

- 1. (a) Define potential gradient and list out salient features of potential difference.
 - (b) An electric dipole, 1.0ay nC-m is located at (0, 0, 0). Find out the potential at $(1, \frac{\pi}{4}, \frac{\pi}{2})$.
- 2. (a) Define magnetic dipole moment and mention its units.
 - (b) A magnetic material has $\mu_r = 10/\pi$, is in a magnetic field of strength, $\mathbf{H} = 5\rho^3 \mathbf{a}_{\phi}$ A/m. Find magnetization.
- 3. (a) Write Maxwell's equations for static fields and explain.
 - (b) In free space, $\mathbf{D} = 5.0 \sin(\omega t + \beta z) a_x$. Find B using Maxwell's equations
- 4. (a) State Poynting theorem and prove it.
 - (b) The magnetic field, **H** of a plane wave has a magnitude of 5 mA/m in a medium defined by $\in_r = 4$, $\mu_r = 1$.
 - i. Determine the average power flow.
 - ii. The maximum energy density in the plane wave.
- 5. (a) Explain the wave propagation characteristics in good dielectrics.
 - (b) Starting from field equation, derive plane wave equation.
- 6. (a) What is dominant in rectangular wave guide? Sketch its EM wave pattern. Draw for all the views.
 - (b) A hollow rectangular waveguide operates at frequency = 1GHz and it has the dimensions of 5 \times 2cm. Check whether TE₂₁ mode propagates or not?
- 7. (a) What is the difference between lumped parameters and distributed parameters? Discuss in detail.
 - (b) Calculate the characteristic impedance, the attenuation constant and phase constant of a transmission line if the following measurements have been made on the line $Z_{OC} = 550\Omega$ and $Z_{SC} = 660\Omega$.
- 8. A line 10km long has the following constants $Zo = 600 \Omega$, $\alpha = 0.1$ nepers/km, $\beta = 0.05$ rad/km. Find the received current when 20mA are sent into one end and receiving end is short circuited. By what angle received current lags with respect to current sent?
